A valid group string is a sequence of group codes with their order spaced
by operator o surrounded by spaces.
The input of an order displays demonstrated decompositions with links to
demonstrated Cayley table.
A normal subgroup is unique. It displays in first position and in bold in the group expression.
Demonstrated orders are : cyclic, pq, p2, 2p, 4p (except A4), 2pp, ppq, pqq and pqr
Any invalid input is
emphasized with an error message.
If the group expression is ambiguous, a message displays.
If
incomplete displays, some known possibilities are not demonstrated.
Known group codes (and algebra name) based on common conventions are:
Z (Cyclic)
K (Klein, generalized Vierergruppe)
Dih (Dihedral)
Dic (Dicyclic)
M (Modular)
QD (Quasidihedral)
Q (Quaternion)
Development is on-going and loosely follows theoretical progress.
App is using free resources of
Google Cloud Platform running
go1.13.9
default
005eb6974c04cebf1015b550e6b8301b53e4ba0c455202bd269a9ac55b101d10bc27a1240da7f231247b8258cf2fa4070d2f0a4b3cbe4b140319c2a1f7fa3e99440350a5d2c1d37aa9acd3d5fa1e
©