A valid group string is a sequence of group codes with their order spaced
by operator o surrounded by spaces.
The input of an order displays demonstrated decompositions with links to
demonstrated Cayley table.
A normal subgroup is unique. It displays in first position and in bold in the group expression.
Demonstrated orders are : cyclic, pq, p2, 2p, 4p (except A4), 2pp, ppq, pqq and pqr
Any invalid input is
emphasized with an error message.
If the group expression is ambiguous, a message displays.
If
incomplete displays, some known possibilities are not demonstrated.
Known group codes (and algebra name) based on common conventions are:
Z (Cyclic)
K (Klein, generalized Vierergruppe)
Dih (Dihedral)
Dic (Dicyclic)
M (Modular)
QD (Quasidihedral)
Q (Quaternion)
Development is on-going and loosely follows theoretical progress.
App is using free resources of
Google Cloud Platform running
go1.13.9
default
0069c7a9885683fa591c7a876b412215fe15af09b3e4db29b19b2426f9b9250f897ef61ed5d5f4ac4987ca4756e95f0a655f6e0bd1bee3d00d6dc3912af1df4f18c7b0d02970b0c74570c8937b0a89
©