A valid group string is a sequence of group codes with their order spaced
by operator o surrounded by spaces.
The input of an order displays demonstrated decompositions with links to
demonstrated Cayley table.
A normal subgroup is unique. It displays in first position and in bold in the group expression.
Demonstrated orders are : cyclic, pq, p2, 2p, 4p (except A4), 2pp, ppq, pqq and pqr
Any invalid input is
emphasized with an error message.
If the group expression is ambiguous, a message displays.
If
incomplete displays, some known possibilities are not demonstrated.
Known group codes (and algebra name) based on common conventions are:
Z (Cyclic)
K (Klein, generalized Vierergruppe)
Dih (Dihedral)
Dic (Dicyclic)
M (Modular)
QD (Quasidihedral)
Q (Quaternion)
Development is on-going and loosely follows theoretical progress.
App is using free resources of
Google Cloud Platform running
go1.13.9
default
0069c7a9886e1d2bc4fbb6eb5cf69525a4dad11ea5c95f32d98d08ee7e6440f946b5b0edacfd43fd9b904dc11ff3aa5bb0c1b2f8418161441c982a431c4de014156c2c4e66e416425703615d49
©